miR-15b/16-2 deletion promotes B-cell malignancies.
نویسندگان
چکیده
The central role of the microRNA (miR) 15a/16-1 cluster in B-cell oncogenesis has been extensively demonstrated, with over two-thirds of B-cell chronic lymphocytic leukemia characterized by the deletion of the miR-15a/16-1 locus at 13q14. Despite the well-established understanding of the molecular mechanisms occurring during miR-15a/16-1 dysregulation, the oncogenic role of other miR-15/16 family members, such as the miR-15b/16-2 cluster (3q25), is still far from being elucidated. Whereas miR-15a is highly similar to miR-15b, miR-16-1 is identical to miR-16-2; thus, it could be speculated that both clusters control a similar set of target genes and may have overlapping functions. However, the biological role of miR-15b/16-2 is still controversial. We generated miR-15b/16-2 knockout mice to better understand the cluster's role in vivo. These mice developed B-cell malignancy by age 15-18 mo with a penetrance of 60%. At this stage, mice showed significantly enlarged spleens with abnormal B cell-derived white pulp enlargement. Flow cytometric analysis demonstrated an expanded CD19+ CD5+ population in the spleen of 40% knockout mice, a characteristic of the chronic lymphocytic leukemia-associated phenotype found in humans. Of note, miR-15b/16-2 modulates the CCND2 (Cyclin D2), CCND1 (Cyclin D1), and IGF1R (insulin-like growth factor 1 receptor) genes involved in proliferation and antiapoptotic pathways in mouse B cells. These results are the first, to our knowledge, to suggest an important role of miR-15b/16-2 loss in the pathogenesis of B-cell chronic lymphocytic leukemia.
منابع مشابه
MicroRNA-15b/16 Attenuates Vascular Neointima Formation by Promoting the Contractile Phenotype of Vascular Smooth Muscle Through Targeting YAP.
OBJECTIVE To investigate the functional role of the microRNA (miR)-15b/16 in vascular smooth muscle (SM) phenotypic modulation. APPROACH AND RESULTS We found that miR-15b/16 is one of the most abundant mRs expressed in contractile vascular smooth muscle cells (VSMCs). However, when contractile VSMCs get converted to a synthetic phenotype, miR-15b/16 expression is significantly reduced. Knocki...
متن کاملmiR‐15b‐5p facilitates the tumorigenicity by targeting RECK and predicts tumour recurrence in prostate cancer
MicroRNAs (miRNAs) have been reported to participate in many biological behaviours of multiple malignancies. Recent studies have shown that miR-15b-5p (miR-15b) exhibits dual roles by accelerating or blocking tumour progression. However, the molecular mechanisms by which miR-15b contributes to prostate cancer (PCa) are still elusive. Here, miR-15b expression was found significantly up-regulated...
متن کاملMicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development.
MicroRNAs (miRNAs) are important regulators of mouse brain development. However, their precise roles in this context remain to be elucidated. Through screening of expression profiles from a miRNA microarray and experimental analysis, we show here that miR-15b controls several aspects of cortical neurogenesis. miR-15b inhibits cortical neural progenitor cell (NPC) proliferation and promotes cell...
متن کاملScientific Report MicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development
MicroRNAs (miRNAs) are important regulators of mouse brain development. However, their precise roles in this context remain to be elucidated. Through screening of expression profiles from a miRNA microarray and experimental analysis, we show here that miR-15b controls several aspects of cortical neurogenesis. miR-15b inhibits cortical neural progenitor cell (NPC) proliferation and promotes cell...
متن کاملmiR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation
The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 37 شماره
صفحات -
تاریخ انتشار 2015